Self-association of the H3 region of syntaxin 1A. Implications for intermediates in SNARE complex assembly.

نویسندگان

  • K M Misura
  • R H Scheller
  • W I Weis
چکیده

Intracellular membrane fusion requires SNARE proteins found on the vesicle and target membranes. SNAREs associate by formation of a parallel four-helix bundle, and it has been suggested that formation of this complex promotes membrane fusion. The membrane proximal region of the cytoplasmic domain of the SNARE syntaxin 1A, designated H3, contributes one of the four helices to the SNARE complex. In the crystal structure of syntaxin 1A H3, four molecules associate as a homotetramer composed of two pairs of parallel helices that are anti-parallel to each other. The H3 oligomer observed in the crystals is also found in solution, as assessed by gel filtration and chemical cross-linking studies. The crystal structure reveals that the highly conserved Phe-216 packs against conserved Gln-226 residues present on the anti-parallel pair of helices. Modeling indicates that Phe-216 prevents parallel tetramer formation. Mutation of Phe-216 to Leu appears to allow formation of parallel tetramers, whereas mutation to Ala destabilizes the protein. These results indicate that Phe-216 has a role in preventing formation of stable parallel helical bundles, thus favoring the interaction of the H3 region of syntaxin 1a with other proteins involved in membrane fusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure and biophysical properties of a complex between the N-terminal SNARE region of SNAP25 and syntaxin 1a.

SNARE proteins are required for intracellular membrane fusion. In the neuron, the plasma membrane SNAREs syntaxin 1a and SNAP25 bind to VAMP2 found on neurotransmitter-containing vesicles. These three proteins contain "SNARE regions" that mediate their association into stable tetrameric coiled-coil structures. Syntaxin 1a contributes one such region, designated H3, and SNAP25 contributes two SN...

متن کامل

Syntaxin 1A has a specific binding site in the H3 domain that is critical for targeting of H+-ATPase to apical membrane of renal epithelial cells.

H(+) transport in the collecting duct is regulated by exocytic insertion of H(+)-ATPase-laden vesicles into the apical membrane. The soluble N-ethylmaleimide-sensitive fusion protein attachment protein (SNAP) receptor (SNARE) proteins are critical for exocytosis. Syntaxin 1A contains three main domains, SNARE N, H3, and carboxy-terminal transmembrane domain. Several syntaxin isoforms form SNARE...

متن کامل

The Munc18-1 domain 3a hinge-loop controls syntaxin-1A nanodomain assembly and engagement with the SNARE complex during secretory vesicle priming

Munc18-1 and syntaxin-1A control SNARE-dependent neuroexocytosis and are organized in nanodomains on the plasma membrane of neurons and neurosecretory cells. Deciphering the intra- and intermolecular steps via which they prepare secretory vesicles (SVs) for fusion is key to understanding neuronal and hormonal communication. Here, we demonstrate that expression of a priming-deficient mutant lack...

متن کامل

Dual roles of Munc18-1 rely on distinct binding modes of the central cavity with Stx1A and SNARE complex

Sec1/Munc18 proteins play a fundamental role in multiple steps of intracellular membrane trafficking. Dual functions have been attributed to Munc18-1: it can act as a chaperone when it interacts with monomeric syntaxin 1A, and it can activate soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) for membrane fusion when it binds to SNARE complexes. Although both modes ...

متن کامل

Molecular determinants of the functional interaction between syntaxin and N-type Ca2+ channel gating.

Syntaxin is a key presynaptic protein that binds to N- and P/Q-type Ca(2+) channels in biochemical studies and affects gating of these Ca(2+) channels in expression systems and in synaptosomes. The present study was aimed at understanding the molecular basis of syntaxin modulation of N-type channel gating. Mutagenesis of either syntaxin 1A or the pore-forming alpha(1B) subunit of N-type Ca(2+) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 16  شماره 

صفحات  -

تاریخ انتشار 2001